Model 29b	Iron-oxide hosted Cu-Au-U				
Alternative Model					
Name					
Description	Cu±Au±U deposits in iron oxide breccia complex				
Commodities	Major: Cu, U, Au; minor: Ag, LREE				
% Global Production	Significant fraction of world U production; small for Cu, Au				
% Australian	Significant fraction of Australian Cu and U production				
Production					
World Class Deposit	2000 Mt @ 1.6 % Cu, 0.6 kg/t U ₃ O ₈ , 0.6 g/t Au, 3.5 g/t Ag				
Size					
World Class Deposit	Olympic Dam				
Examples					
Geological Setting	Intracratonic or continental margin rifts filled with anorogenic				
	mafic and felsic magmatism caused by mafic underplating. For				
	Phanerozoic deposits continental arc and/or back arc extension setting				
Age	Most important deposits are Palaeo- and Mesoproterozoic. Possible				
nige	Phanerozoic analogues include: Bafq-Seghand district in Iran,				
	Avnik district in Turkey, Cortez Mountains and Buena Vista Hills				
	in Nevada, La Serean-Copiapo iron district and El Laco region in				
	Chile.				
Components:					
Source	Fluids: saline groundwater and/or playa lake. Magmatic related to				
	anorogenic magmatism or deeply circulating meteoric water.				
	Metals: mafic and felsic volcanic acquifer for ground and lake				
	water. Oxidised I-type granitoids				
	Energy: Anorogenic magmatism and high palaeo-geothermal				
	gradient				
Transport/Pathway	Transtensional and extensional faults; diatreme-related vent zones;				
	permeable near-surface aquifers ± saline lake. Zones of regional Na				
Trap	(±K)-Fe metasomatism indicative of fluid flow zones Structural: breccia complex, array of brittle faults				
Тар	Chemical: Pre-existing Fe-oxide—rich bodies; redox interface, e.g.				
	between oxidised surficial waters/groundwater reservoirs and high				
	temperature reduced fluids				
Other	•				
	shows regional association with iron-oxide (magnetite) hosted				
	relatively poorer deposits, skarn related deposits (Emmie Bluff)				
Critical Elements	• Intracratonic or continental margin extensional and/or transtensional zones (1)				
	 Anorogenic bimodal felsic and mafic volcanism & hypabyssal 				
	intrusions (1)				
	 High-temperature, fractionated, I- type oxidised felsic magmas 				
	(1)				
	Diatreme ± maar volcanic environments; playa lakes (2)				
	Pre-existing or paragenetically early Fe-oxide–rich bodies (2)				
	Redox interface e.g. surficial waters/groundwater reservoirs (1)				
Other Comments					
Key References	Reeve, J.S., Cross, K.C., Smith, R.N. & Oreskes, N., 1990. Olympic Dam				

Copper-Uranium-Gold-Silver Deposit. In: Hughes, F.E. (editor), Geology of
Mineral Deposits of Australia and Papua New Guinea, 1009-1035.
Hitzman, M. W., Oreskes, N., & Einaudi, M. T., 1992. Geologic characteristics
and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits.
Precambrian Research., 58, 241-287.
Johnson, J.P. & McCulloch, M.T., 1995. Sources of mineralising fluids for the
Olympic Dam deposit (South Australia). Chemical Geology, 121, 177-199.
Haynes, D.W., Cross, K.C., Bills, R.T. & Reed, M.H., 1995. Olympic Dam ore
genesis: a fluid-mixing model. Economic Geology, 90, 281-307.

OLYMPIC DAM - STYLE CU-AU SYSTEM

✓ Fluids (intermediate redox) sourced mainly from felsic magmas

Fluids (intermediate redox) reacted with mafic/ultramafic rocks/magmas

— → Meteoric waters (oxidised, cool)

Geology based on Reeve et al. (1990) & Haynes et al. (1995)